
COMPUTING FUNCTIONS WITH

TURING MACHINES

TURING MACHINES WITH OUTPUTS

 When we begin the computation the tape contains

the input.

 When the TM accepts (halts) return what is written

in the tape.

 TM doesn’t reject in any input.

NUMBER REPRESENTATION

• Decimal: 12

• Binary: 1100

• Unary: 111111111111

The unary is space consuming so generally we prefer

binary.

When we don’t care about resources it is more

convenient to use unary (easier to manipulate with

TMs).

TOTAL AND PARTIAL FUNCTIONS

 A function f : N → N is total (or just function) when f(n) is

defined for every n

Example: f(n) = 2n

1

2

3

4

…

2

4

6

8

…

f

 N N

0 0

TOTAL AND PARTIAL FUNCTIONS

 A function f : N → N is called partial when f(n) is defined

for some n.

Example: f(n) = logn

1

2

4

7

8

…

0

2

3

…

f

3

5 6

3

 N N

1

9

0

COMPUTABLE AND PARTIALLY COMPUTABLE

FUNCTIONS

• A (total) function f : N → N is (total) computable if we can

find a Turing Machine that computes it (given any number

n in Unary as input in the tape, after completing the

computation the tape contains f(n) in Unary).

• A partial function f : N → N is said to be partially

computable if there is a Turing Machine that partially

computes it (if f is defined for n then the machine should

output f(n), else it should loop for ever).

EXAMPLE: F(N) = 2N IS COMPUTABLE

We design a TM that computes f(n).

High Level Program:

• The tape is divided into input and output (output is right

after the first blank after the input)

• Repeat:

– Erase one 1 from the input.

– Pass along the rest of the input

– Pass the blank that separates the input from the output.

– Pass along the output until you reach the end (blank).

– write two 1s.

– Go to the beginning of the input.

• Until the input is erased (accept).

EXAMPLE: F(N) = 2N IS COMPUTABLE

The machine for f(n) = 2n

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

1 → 1 , R 1 → 1, R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: ε

… …

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: ε

… …

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: 11

1 1 … …

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: 11

1 … …

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: 11

1 … …

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: 11

1 … …

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: 11

1 1 … …

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: 11

1 1 … … 1

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: 11

1 1 … … 1

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: 11

1 1 … … 1

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: 11

1 1 … … 1

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: 11

1 1 … … 1

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: 11

1 … … 1

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: 11

1 … … 1

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: 11

1 … … 1

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: 11

1 … … 1

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: 11

1 … … 1 1

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: 11

1 … … 1 1 1

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: 11

1 … … 1 1 1

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: 11

1 … … 1 1 1

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: 11

1 … … 1 1 1

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: 11

1 … … 1 1 1

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: 11

1 … … 1 1 1

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = 2N IS COMPUTABLE

• Test input: 11

1 … … 1 1 1

qf

q0 q1 q2

q5

1 → □ , R □ → □ , R

q4 q3
□ → 1 , L

1 → 1, L 1 → 1, L

□ → □ , L

1 → 1 , R 1 → 1, R

EXAMPLE: F(N) = LOGN IS PARTIALLY COMPUTABLE.

We design a TM that partially computes f(n).

High Level Program:

• Add a $ in the beginning and the end of the input (this will make the task of
going from one state to another easier)

• Repeat:
– For every two ones in the input erase the first and leave the second there.

– If there was an odd > 1 number of 1s then loop for ever (the function is undefined)

– If the number of 1 is even then pass the $ sign

– Pass along the output until you reach the end (blank).

– Write one 1 in the output (after the $).

– Go to the beginning of the input.

• Until there is only one 1 in the input.

• Erase the two $ signs and accept.

EXAMPLE: F(N) = LOGN IS PARTIALLY COMPUTABLE.

qf

$

R
1

e

v

$L

1
 →

 □
 ,

R

1 → 1 , R

□ → $, R

□
 →

 $
 ,

L

$

L

1 → 1, L

1 → 1 , R

0

$

E

o

d

□ → □ , R

o

u

1 → □ , R

1 → 1 , R

1 → 1, L

1 → 1 , L
□ → □ , L

EXAMPLE: F(N) = LOGN IS PARTIALLY COMPUTABLE.

Try to run the machine by hand

Test inputs:

• ε (shouldn’t accept)

• 1 (should accept)

• 11 (should accept)

• 111 (shouldn’t accept)

• 111111 (shouldn’t accept)

• 11111111 (should accept)

K-ARY FUNCTIONS

 A function f might have more than one parameters.

 f: N x N x … x N → N is called k-ary function

Examples:

 + : N x N → N (addition of integers) is a binary

function.
k times

REPRESENTATION OF A K-TUPLE IN A DTM

A k-tuple (x1 , x2 , …, xk) can be represented in a Turing

Machine by the following way:

 Example: (2, 4)

1 1 … 1 … …
0 1 … 1 0 … 1 … 1

head

x1 x2 xk

1 1 0 1 … … 1 1 1

BINARY ADDITION IS COMPUTABLE

• High level program:

– Remove the 0 from the middle and make the 1s in the input
consecutive.

• TM for this function:

qf q0 q1 q2
0 → 1 , R □ → □ , L 1 → □ , R

1 → 1, R 1 → 1, R 1 → 1, R

BINARY ADDITION IS COMPUTABLE

• Test input: (2, 3) = 110111

1 1 0 1 … … 1 1

qf q0 q1 q2
0 → 1 , R □ → □ , L 1 → □ , R

1 → 1, R 1 → 1, R 1 → 1, R

BINARY ADDITION IS COMPUTABLE

• Test input: (2, 3) = 110111

1 1 0 1 … … 1 1

qf q0 q1 q2
0 → 1 , R □ → □ , L 1 → □ , R

1 → 1, R 1 → 1, R

BINARY ADDITION IS COMPUTABLE

• Test input: (2, 3) = 110111

1 1 0 1 … … 1 1

qf q0 q1 q2
0 → 1 , R □ → □ , L 1 → □ , R

1 → 1, R 1 → 1, R

BINARY ADDITION IS COMPUTABLE

• Test input: (2, 3) = 110111

1 1 1 1 … … 1 1

qf q0 q1 q2
0 → 1 , R □ → □ , L 1 → □ , R

1 → 1, R 1 → 1, R

BINARY ADDITION IS COMPUTABLE

• Test input: (2, 3) = 110111

1 1 1 1 … … 1 1

qf q0 q1 q2
0 → 1 , R □ → □ , L 1 → □ , R

1 → 1, R 1 → 1, R

BINARY ADDITION IS COMPUTABLE

• Test input: (2, 3) = 110111

1 1 1 1 … … 1 1

qf q0 q1 q2
0 → 1 , R □ → □ , L 1 → □ , R

1 → 1, R 1 → 1, R

BINARY ADDITION IS COMPUTABLE

• Test input: (2, 3) = 110111

1 1 1 1 … … 1 1

qf q0 q1 q2
0 → 1 , R □ → □ , L 1 → □ , R

1 → 1, R 1 → 1, R

BINARY ADDITION IS COMPUTABLE

• Test input: (2, 3) = 110111

1 1 1 1 … … 1 1

qf q0 q1 q2
0 → 1 , R □ → □ , L 1 → □ , R

1 → 1, R 1 → 1, R

BINARY ADDITION IS COMPUTABLE

• Test input: (2, 3) = 110111

1 1 1 1 … … 1

qf q0 q1 q2
0 → 1 , R □ → □ , L 1 → □ , R

1 → 1, R 1 → 1, R

PREDICATES

 Predicate: A Boolean (yes-no) function.

 P : N → {0,1}

 Examples

Unary predicate

k-ary predicate

 Partial Predicates: Predicates with unique value that are

not defined for some input.

else

n
nPNP

,0

0,1
)(},1,0{:

else

yx
yxQNNQ

,0

,1
),(},1,0{:

COMPUTABLE PREDICATES

 A predicate P is computable if it can be computed by a

Turing Machine

 a) There is a Turing Machine that, given its parameters n1, …,

nk as input it outputs P(n1, …, nk)

 b) There is a Turing Machine that decides P (in other words

accepts if the output is 1 and rejects if the output is 0.

 The 2 definitions are equivalent. We use the second one.

P(N) IS COMPUTABLE

 High level program:

 If the tape is empty accept else reject

 Turing Machine:

qf q0
□ → □ , R

Q(X,Y) IS COMPUTABLE

 High level program:

- Remove one 1 from both x and y. If you can do that for all the

1s in x then accept, else reject.

 TM for this predicate:

qf q0 q1 q2
1 → x , R 0 → 0 , R 1 → x , L

x → x, R 1 → 1, R

q3
□ → □ , R

q4

x → x, L

1 → 1, L

1 → 1, L

0 → 0 , R

x → x, R

COMPUTABLE SETS, CHARACTERISTIC

FUNCTION

 The characteristic function χΑ of a set A is defined

as follows:

 A set is computable if its characteristic function is

computable.

Ax

Ax
xA

,0

,1
)(

COMPUTABLE LANGUAGES

 A language is computable if its characteristic

function is computable (we can use a Turing

Machine to decide membership)

 For example {anbn , n≥0} is a computable language

because there is a Turing Machine that, given any

string in Σ* it decides whether the string belongs in

the language or not.

PARTIALLY COMPUTABLE LANGUAGES

 Partially Computable Predicates: There is a Turing

Machine that for output 1 it accepts (halts) and for ↑

it loops for ever.

 Partially Computable Languages: The characteristic

function is partially computable (languages that are

accepted by Turing Machines).

COUNTING INFINITE SETS

 We say that two infinite sets A, B are of the same size if

there is an one to one and onto function from A to B (or

from B to A)

 We say that an infinite set A is at most as large as

another infinite set B if we can find an one to one function

from A to B.

EXAMPLES

 |A| = |B| |A| ≤ |B|

a2

a3
…

b2

b3
…

 A B

a1 b1

a2

a3
…

b2

b3

…

 A B

a1 b1

b4

COUNTABLE SETS

A set is countable if you can find an one to one

and onto correspondence with the natural

numbers (intuitively this means that it has the

same number of elements as the natural

numbers)

b

c

d

e

…

2

3

4

5

…

 A N

a 1

THE SET OF THE EVEN NUMBERS IS

COUNTABLE

 There is an one to one an onto function from E (the even

numbers) to N: f(n) = n/2

2

4

6

8

…

1

2

3

4

…

f

 N E

0 0

N X N IS COUNTABLE

(0,0) (0,1) (0,2) (0,3) (0,4)

(1,0)

(2,0)

(3,0)

(4,0)

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

(4,1) (4,2) (4,3) (4,4)

0 1

2 3

4
5

6

7

8 9

10

11

12
13 14

15

16
17 18 19

20

21

22

23

24
. . .

.

.

.

.
 .
 .

THE SET OF TURING MACHINES IS

COUNTABLE

 Every Turing Machine can be given a unique number in

binary as follows:

 Give to the states a number: q0 is 1, q1 is 11 etc…

 Give to the symbols of the stack a unique number: a is 1, b is

11, c is 111 etc…

 Assign 1 to L, 11 to R and 111 to S

 For each δ(q, a) = (q’, b, H) give the binary number

11…1011...1011…1011…1011…1

 q a q’ b H

where H is L, R or S.

THE SET OF TURING MACHINES IS

COUNTABLE

 Every Turing Machine can be given a unique number in

binary as follows:

 To obtain the number of the machine combine each number

for the arrows together (separated with 00).

 The number starts with q0 00 qf 00

 The number associated with the Turing Machine M is

denoted as <M>

EXAMPLE

 The Turing Machine MP that computes the Predicate

 P(n) := n=0 has the following number

<MP> = 100110010101101011

qf q0
□ → □ , R

?

UNCOUNTABLE SETS

Countable sets are infinite.

However there are some sets that are

considered “even larger”.

There is no way to enumerate them.

Diagonalization method: Suppose that there is

an enumeration of all the elements of the set.

Obtain a new element by taking different parts of

each element and changing them.

The new element is not in the enumeration.
Contradiction!!!

THE SET OF N →{0,1} PREDICATES IS NOT

COUNTABLE

Suppose that it was. An enumeration of all the

predicate would be the following:

 1 2 3 4 5 6

1 0 1 0 1 1 1 f(1) = 1

2 1 0 1 1 0 0 . . . f(2) = 1

3 0 0 1 0 1 1 f(3) = 0

4 1 1 1 0 1 1 f(4) = 1
 .

 .

 .

The predicate f(n) = 1 - fn(n) is not in the

enumeration.

NOT ALL PREDICATES ARE COMPUTABLE

1. Turing Machines are countable

2. Predicates are uncountable

Thus there is a predicate for which there is no Turing

Machine that decides it.

A PREDICATE THAT IS NOT COMPUTABLE

The Halting Problem: Given a Turing Machine M

and an input x does M halt with input x?

 Important problem: If a machine doesn’t stop

then we don’t know for sure if it is going to

accept the input or not.

 It turns out that this problem is not solvable!

 In other words we can prove that the predicate

Halt is not computable (there is no Turing

Machine that takes as input the pair (<M>, x) and

decides if M is going to accept on x.

PREDICATE HALT IS NOT COMPUTABLE

We will prove that the predicate

 is not computable.

Suppose that there is a TM HTM that decides H.

 In other words, HTM(<M>) halts if H(<M>) = 1 else

loops.

Take the machine H’TM which does the opposite:

halts on input M if H(<M>) = 0 else loops.

Run H’TM with input the machine H’TM itself.

 H’TM (<H’TM>) is going to halt if H(<H’TM>) = 0 which

means that H’TM (<H’TM >) loops.

 H’TM (<H’TM>) is going to loop if H(<H’TM>) = 1 which

means that H’TM (<H’TM >) halts.

loopsMM

haltsMM
MH

)(,0

)(,1
)(

IMPORTANT FACTS

 This method is called self-reference

 Thesis Turing-Church implies that any other machine or

program can do exactly whatever a Turing Machine can

do.

 There is no machine or program that can decide whether

or not a machine or program is going to halt.

 Computers CANNOT decide the halting problem.

HALTING PROBLEM FOR PASCAL PROGRAMS

 Suppose that there is a Pascal program Halt that takes

as input another Pascal program p and decides whether

this program is going to halt or not (outputs true if p halts,

else false).

 Create a new Pascal program Halt’ by adding to Halt the

following code:

 while Halt(p)=true do a:=1;

 This makes Halt’(p) to loop if p halts and vice versa.

HALTING PROBLEM FOR PASCAL PROGRAMS

 Of course Halt’ is a proper Pascal program so why

not giving it as input to Halt’ (self-reference).

 Now:

 If Halt’(Halt’) halts then Halt(Halt’) = true so Halt’(Halt’)

is going to loop .

 If Halt’(Halt’) loops then Halt(Halt’) = false so Halt’(Halt’)

is going to halt

 Contradiction!!!

UNIVERSAL TURING MACHINE

 We can create a Turing machine U that takes a pair of

numbers (<M>, x) as input and then simulates M running

on input x:

 If M accepts on x then U accepts on (<M>, x)

 If M rejects on x then U rejects on (<M>, x)

 If M loops on x then U loops on (<M>, x)

 This machine is called a Universal Turing Machine.

PREDICATE H IS PARTIALLY COMPUTABLE

 The partial predicate

 is partially computable.

 Run the Universal Turing machine U with input

(<M>,<M>).

loopsMM

haltsMM
MH

)(,

)(,1
)(

A PREDICATE THAT IS NOT PARTIALLY

COMPUTABLE

Consider the predicate

 is not partially computable

Suppose that there was a TM U’ that could partially

compute .

 Idea: Run both machines U and U’ on input

(<M>,<M>). At some point one of them will halt.

 If U halts then accept

 If U’ halts then reject

But this decides the Halt predicate. Contradiction!

Difficult part: Simulate in one machine the

concurrent running of U and U’.

loopsMM

haltsMM
MH

)(,0

)(,
)(

H

H

