
COMPUTING FUNCTIONS WITH 

TURING MACHINES 



TURING MACHINES WITH OUTPUTS 

 When we begin the computation the tape contains 

the input. 

 When the TM accepts (halts) return what is written 

in the tape. 

 TM doesn’t reject in any input. 



NUMBER REPRESENTATION 

• Decimal: 12 

• Binary: 1100 

• Unary: 111111111111 

 

The unary is space consuming so generally we prefer 

binary. 

When we don’t care about resources it is more 

convenient to use unary (easier to manipulate with 

TMs).  



TOTAL AND PARTIAL FUNCTIONS 

 A function f : N → N is total (or just function) when f(n) is 

defined for every n 

Example: f(n) = 2n 
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TOTAL AND PARTIAL FUNCTIONS 

 A function f : N → N is called partial when f(n) is defined 

for some n. 

Example: f(n) = logn 
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COMPUTABLE AND PARTIALLY COMPUTABLE 

FUNCTIONS 

• A (total) function f : N → N is (total) computable if we can 

find a Turing Machine that computes it (given any number 

n in Unary as input in the tape, after completing the 

computation the tape contains f(n) in Unary). 

• A partial function f : N → N is said to be partially 

computable if there is a Turing Machine that partially 

computes it (if f is defined for n then  the machine should 

output f(n), else it should loop for ever). 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

We design a TM that computes f(n). 

High Level Program: 

• The tape is divided into input and output (output is right 

after the first blank after the input) 

• Repeat: 

– Erase one 1 from the input. 

– Pass along the rest of the input 

– Pass the blank that separates the input from the output. 

– Pass along the output until you reach the end (blank). 

–  write two 1s. 

–  Go to the beginning of the input. 

• Until the input is erased (accept). 

 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

The machine for f(n) = 2n 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

 
1 → 1 , R 1 → 1, R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: ε 

… … 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: ε 

… … 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: 11 

1 1 … … 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: 11 

1 … … 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: 11 

1 … … 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: 11 

1 … … 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: 11 

1 1 … … 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: 11 

1 1 … … 1 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: 11 

1 1 … … 1 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: 11 

1 1 … … 1 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: 11 

1 1 … … 1 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: 11 

1 1 … … 1 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: 11 

1 … … 1 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: 11 

1 … … 1 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: 11 

1 … … 1 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: 11 

1 … … 1 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: 11 

1 … … 1 1 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: 11 

1 … … 1 1 1 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: 11 

1 … … 1 1 1 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: 11 

1 … … 1 1 1 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: 11 

1 … … 1 1 1 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: 11 

1 … … 1 1 1 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: 11 

1 … … 1 1 1 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = 2N IS COMPUTABLE 

• Test input: 11 

1 … … 1 1 1 

qf 

q0 q1 q2 

q5 

1 → □ , R □ → □ , R 

q4 q3 
□ → 1 , L 

1 → 1, L 1 → 1, L 

□ → □ , L 

 
1 → 1 , R 1 → 1, R 



EXAMPLE: F(N) = LOGN IS PARTIALLY COMPUTABLE. 

We design a TM that partially computes f(n). 

High Level Program: 

• Add a $ in the beginning and the end of the input (this will make the task of 
going from one state to another easier) 

• Repeat: 
– For every two ones in the input erase the first and leave the second there. 

– If there was an odd > 1 number of 1s then loop for ever (the function is undefined) 

– If the number of 1 is even then pass the $ sign 

– Pass along the output until you reach the end (blank). 

– Write one 1 in the output (after the $). 

– Go to the beginning of the input. 

• Until there is only one 1 in the input. 

• Erase the two $ signs and accept. 
 



EXAMPLE: F(N) = LOGN IS PARTIALLY COMPUTABLE. 

qf 

$

R 
1 

e

v 

$L 

1
 →

 □
 , 

R
 

1 → 1 , R 

□ → $ , R 

□
 →

 $
 , 

L 

$ 

L 

1 → 1, L 

 
1 → 1 , R 

0 

$

E 

o

d 

□ → □ , R 

o

u 

 
1 → □ , R 

1 → 1 , R 

1 → 1, L 

1 → 1 , L 
□ → □ , L 



EXAMPLE: F(N) = LOGN IS PARTIALLY COMPUTABLE. 

Try to run the machine by hand 

Test inputs:  

• ε (shouldn’t accept) 

• 1 (should accept) 

• 11 (should accept) 

• 111 (shouldn’t accept) 

• 111111 (shouldn’t accept) 

• 11111111 (should accept) 



K-ARY FUNCTIONS 

 A function f might have more than one parameters. 

 f: N x N x … x N → N  is called k-ary function 

 

Examples: 

 + : N x N → N (addition of integers) is a binary 

function. 
k times 



REPRESENTATION OF A K-TUPLE IN A DTM  

A k-tuple (x1 , x2 , …, xk) can be represented in a Turing 

Machine by the following way: 

 

 

 

 Example: (2, 4) 

 

1 1 … 1 … … 
0 1 … 1 0 … 1 … 1 

head 

x1 x2 xk 

1 1 0 1 … … 1 1 1 



BINARY ADDITION IS COMPUTABLE  

• High level program: 

– Remove the 0 from the middle and make the 1s in the input 
consecutive. 

• TM for this function: 

qf q0 q1 q2 
0 → 1 , R □ → □ , L 1 → □ , R 

1 → 1, R 1 → 1, R 1 → 1, R 



BINARY ADDITION IS COMPUTABLE 

• Test input: (2, 3) = 110111 

1 1 0 1 … … 1 1 

qf q0 q1 q2 
0 → 1 , R □ → □ , L 1 → □ , R 

1 → 1, R 1 → 1, R 1 → 1, R 



BINARY ADDITION IS COMPUTABLE 

• Test input: (2, 3) = 110111 

1 1 0 1 … … 1 1 

qf q0 q1 q2 
0 → 1 , R □ → □ , L 1 → □ , R 

1 → 1, R 1 → 1, R 



BINARY ADDITION IS COMPUTABLE 

• Test input: (2, 3) = 110111 

1 1 0 1 … … 1 1 

qf q0 q1 q2 
0 → 1 , R □ → □ , L 1 → □ , R 

1 → 1, R 1 → 1, R 



BINARY ADDITION IS COMPUTABLE 

• Test input: (2, 3) = 110111 

1 1 1 1 … … 1 1 

qf q0 q1 q2 
0 → 1 , R □ → □ , L 1 → □ , R 

1 → 1, R 1 → 1, R 



BINARY ADDITION IS COMPUTABLE 

• Test input: (2, 3) = 110111 

1 1 1 1 … … 1 1 

qf q0 q1 q2 
0 → 1 , R □ → □ , L 1 → □ , R 

1 → 1, R 1 → 1, R 



BINARY ADDITION IS COMPUTABLE 

• Test input: (2, 3) = 110111 

1 1 1 1 … … 1 1 

qf q0 q1 q2 
0 → 1 , R □ → □ , L 1 → □ , R 

1 → 1, R 1 → 1, R 



BINARY ADDITION IS COMPUTABLE 

• Test input: (2, 3) = 110111 

1 1 1 1 … … 1 1 

qf q0 q1 q2 
0 → 1 , R □ → □ , L 1 → □ , R 

1 → 1, R 1 → 1, R 



BINARY ADDITION IS COMPUTABLE 

• Test input: (2, 3) = 110111 

1 1 1 1 … … 1 1 

qf q0 q1 q2 
0 → 1 , R □ → □ , L 1 → □ , R 

1 → 1, R 1 → 1, R 



BINARY ADDITION IS COMPUTABLE 

• Test input: (2, 3) = 110111 

1 1 1 1 … … 1 

qf q0 q1 q2 
0 → 1 , R □ → □ , L 1 → □ , R 

1 → 1, R 1 → 1, R 



PREDICATES 

 Predicate: A Boolean (yes-no) function. 

 P : N → {0,1}  

 Examples 

Unary predicate 

   

k-ary predicate 

 

 Partial Predicates: Predicates with unique value that are 

not defined for some input. 
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COMPUTABLE PREDICATES 

 A predicate P is computable if it can be computed by a 

Turing Machine 

 a) There is a Turing Machine that, given its parameters n1, …, 

nk as input it outputs P(n1, …, nk) 

 b) There is a Turing Machine that decides P (in other words 

accepts if the output is 1 and rejects if the output is 0. 

 The 2 definitions are equivalent. We use the second one. 



P(N) IS COMPUTABLE 

 High level program: 

 If the tape is empty accept else reject 

 Turing Machine: 

qf q0 
□ → □ , R 



Q(X,Y) IS COMPUTABLE 

 High level program: 

-  Remove one 1 from both x and y. If you can do that for all the 

1s in x then accept, else reject. 

 TM for this predicate: 

 

qf q0 q1 q2 
1 → x , R 0 → 0 , R 1 → x , L 

x → x, R 1 → 1, R 

q3 
□ → □ , R 

q4 

x → x, L 

1 → 1, L 

1 → 1, L 

0 → 0 , R 

x → x, R 



COMPUTABLE SETS, CHARACTERISTIC 

FUNCTION 

 The characteristic function χΑ of a set A is defined 

as follows: 

 

 

 A set is computable if its characteristic function is 

computable.  
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COMPUTABLE LANGUAGES 

 A language is computable if its characteristic 

function is computable (we can use a Turing 

Machine to decide membership) 

 For example {anbn , n≥0} is a computable language 

because there is a Turing Machine that, given any 

string in Σ* it decides whether the string belongs in 

the language or not. 



PARTIALLY COMPUTABLE LANGUAGES 

 Partially Computable Predicates: There is a Turing 

Machine that for output 1 it accepts (halts) and for ↑ 

it loops for ever. 

 Partially Computable Languages: The characteristic 

function is partially computable (languages that are 

accepted by Turing Machines).  

 



COUNTING INFINITE SETS 

 We say that two infinite sets A, B are of the same size if 

there is an one to one and onto function from A to B (or 

from B to A) 

 We say that an infinite set A is at most as large as 

another infinite set B if we can find an one to one function 

from A to B. 

 



EXAMPLES 

      |A| = |B|    |A| ≤ |B| 

a2 

a3 
… 

b2 

b3 
… 

 A   B  

a1 b1 

a2 

a3 
… 

b2 

b3 

… 

 A   B  

a1 b1 

b4 



COUNTABLE SETS 

A set is countable if you can find an one to one 

and onto correspondence with the natural 

numbers (intuitively this means that it has the 

same number of elements as the natural 

numbers) 
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 A   N  

a 1 



THE SET OF THE EVEN NUMBERS IS 

COUNTABLE 

 There is an one to one an onto function from E (the even 

numbers) to N: f(n) = n/2  
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 N   E  
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N X N IS COUNTABLE 

(0,0) (0,1) (0,2) (0,3) (0,4) 

(1,0) 

(2,0) 

(3,0) 

(4,0) 

(1,1) (1,2) (1,3) (1,4) 

(2,1) (2,2) (2,3) (2,4) 

(3,1) (3,2) (3,3) (3,4) 

(4,1) (4,2) (4,3) (4,4) 
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THE SET OF TURING MACHINES IS 

COUNTABLE 

 Every Turing Machine can be given a unique number in 

binary as follows: 

 Give to the states a number: q0 is 1, q1 is 11 etc… 

 Give to the symbols of the stack a unique number: a is 1, b is 

11, c is 111 etc… 

 Assign 1 to L, 11 to R and 111 to S 

 For each δ(q, a) = (q’, b, H) give the binary number 

11…1011...1011…1011…1011…1 

     q    a     q’      b      H 

where H is L, R or S. 



THE SET OF TURING MACHINES IS 

COUNTABLE 

 Every Turing Machine can be given a unique number in 

binary as follows: 

 To obtain the number of the machine combine each number 

for the arrows together (separated with 00).  

 The number starts with q0 00 qf 00 

 The number associated with the Turing Machine M is 

denoted as <M> 



EXAMPLE 

 The Turing Machine MP that computes the Predicate  

 P(n) := n=0 has the following number 

 

<MP> = 100110010101101011 

qf q0 
□ → □ , R 

? 



UNCOUNTABLE SETS 

Countable sets are infinite. 

However there are some sets that are 

considered “even larger”. 

There is no way to enumerate them. 

Diagonalization method: Suppose that there is 

an enumeration of all the elements of the set. 

Obtain a new element by taking different parts of 

each element and changing them. 

The new element is not in the enumeration. 
Contradiction!!! 



THE SET OF N →{0,1} PREDICATES IS NOT 

COUNTABLE 

Suppose that it was. An enumeration of all the 

predicate would be the following: 

     1    2    3    4    5    6 

1   0    1    0    1    1    1   f(1) = 1 

2   1   0    1    1    0    0    .    .    .  f(2) = 1 

3 0    0    1    0    1    1   f(3) = 0 

4 1    1    1    0    1    1   f(4) = 1 
  . 

  . 

  . 

The predicate f(n) = 1 - fn(n) is not in the 

enumeration. 

 



NOT ALL PREDICATES ARE COMPUTABLE 

1. Turing Machines are countable 

2. Predicates are uncountable 

Thus there is a predicate for which there is no Turing 

Machine that decides it. 



A PREDICATE THAT IS NOT COMPUTABLE 

The Halting Problem: Given a Turing Machine M 

and an input x does M halt with input x? 

 Important problem: If a machine doesn’t stop 

then we don’t know for sure if it is going to 

accept the input or not. 

 It turns out that this problem is not solvable!  

 In other words we can prove that the predicate 

Halt is not computable (there is no Turing 

Machine that takes as input the pair (<M>, x) and 

decides if M is going to accept on x. 



PREDICATE HALT IS NOT COMPUTABLE 

We will prove that the predicate  

 is not computable. 

Suppose that there is a TM HTM that decides H. 

 In other words, HTM(<M>) halts if H(<M>) = 1 else 

loops. 

Take the machine H’TM which does the opposite: 

halts on input M if H(<M>) = 0 else loops. 

Run H’TM with input the machine H’TM itself. 

 H’TM (<H’TM>) is going to halt if H(<H’TM>) = 0 which 

means that H’TM (<H’TM >) loops. 

 H’TM (<H’TM>) is going to loop if H(<H’TM>) = 1 which 

means that H’TM (<H’TM >) halts. 










loopsMM

haltsMM
MH

)(,0

)(,1
)(



IMPORTANT FACTS 

 This method is called self-reference 

 Thesis Turing-Church implies that any other machine or 

program can do exactly whatever a Turing Machine can 

do. 

 There is no machine or program that can decide whether 

or not a machine or program is going to halt. 

 Computers CANNOT decide the halting problem.  



HALTING PROBLEM FOR PASCAL PROGRAMS 

 Suppose that there is a Pascal program Halt that takes 

as input another Pascal program p and decides whether 

this program is going to halt or not (outputs true if p halts, 

else false). 

 Create a new Pascal program Halt’ by adding to Halt the 

following code: 

 while Halt(p)=true do a:=1; 

 This makes Halt’(p) to loop if p halts and vice versa. 



HALTING PROBLEM FOR PASCAL PROGRAMS 

 Of course Halt’ is a proper Pascal program so why 

not giving it as input to Halt’ (self-reference). 

 Now: 

 If Halt’(Halt’) halts then Halt(Halt’) = true so Halt’(Halt’) 

is going to loop . 

 If Halt’(Halt’) loops then Halt(Halt’) = false so Halt’(Halt’) 

is going to halt 

 Contradiction!!! 



UNIVERSAL TURING MACHINE 

 We can create a Turing machine U that takes a pair of 

numbers (<M>, x) as input and then simulates M running 

on input x: 

 If M accepts on x then U accepts on (<M>, x) 

 If M rejects on x then U rejects on (<M>, x) 

 If M loops on x then U loops on (<M>, x)  

 This machine is called a Universal Turing Machine. 



PREDICATE H IS PARTIALLY COMPUTABLE 

 The partial predicate 

 is partially computable. 

 Run the Universal Turing machine U with input 

(<M>,<M>).    
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A PREDICATE THAT IS NOT PARTIALLY 

COMPUTABLE 

Consider the predicate 

     is not partially computable 

Suppose that there was a TM U’ that could partially 

compute     . 

 Idea: Run both machines U and U’ on input 

(<M>,<M>). At some point one of them will halt. 

 If U halts then accept 

 If U’ halts then reject 

But this decides the Halt predicate. Contradiction! 

Difficult part: Simulate in one machine the 

concurrent running of U and U’. 
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